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Abstract 

A model predictive, dynamic control allocation algorithm is developed in this paper for the inner loop of 

a re-entry vehicle guidance and control system. The purpose of the control allocation portion of the guidance 

and control architecture is to distribute control power among redundant control effectors to meet the desired 

control objectives under a set of constraints. Most existing algorithms neglect the actuator dynamics or deal with 

the actuator dynamics separately, thereby assuming a static relationship between actuator outputs (in our case, 

control surface deflections) and plant inputs (i.e., moments about the three body axis). In this paper, we propose 

a dynamic control allocation scheme based on Model-based Predictive Control (MPC) that directly takes into 

account actuators with nonnegligible dynamics and hard constraints. Model-based Predictive Control schemes 

compute the control inputs by optimizing an open-loop control objective over a future time interval at each 

control step. In our setup, the model-predictive control allocation problem is posed as a sequential quadratic 

programming problem with dynamic constraints, which can be cast into a linear complementary problem (LCP) 

and therefore solved by linear programming approaches in a. finite number of iterations. The time-varying affine 

internal model used in the MPC design enhances the ability of the control loop to deal with unmodeled system 

nonlinearities. The approach can be easily extended to encompass a variety of linear actuator dynamics without 

the need to redesign the overall scheme. Results are based on the model of an experimental reusable launch 

vehicle, and compared with that of existing static control allocation schemes. 

I.  INTRODUCTION 

Control allocation approaches for advanced aircraft, in particular re-entry vehicles (RVs), have re- 

ceived increased attention as modem aircraft employ more complicated control architectures. Generally 

speaking, systems of this kind are characterized by the presence of more control effectors than controlled 

variables, meaning that the control system possesses a certain degree of redundancy, and can in principle 

achieve multiple control objectives. However, this increased capability requires intelligent schemes, 

usually satisfying some criteria for optimality, to select in real time the control configuration for the 

available actuators. Typically, hard performance constraints exist, so that the control allocation scheme 

'This work was supported by the AFRL/AFOSR Collaborative Center of Control Sciences at The Ohio State University. 
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Fig. 1.   Control Allocation 

must distribute the available control authority among redundant control effectors to meet the control 

objectives, and satisfy the constraints at the same time (see, for instance, [2]). Control allocation modules 

and closed-loop control lav/s are generally designed separately. The basic control allocation objective, 

then, is to generate appropriate commands to the actuators in order to produce the desired control at 

the plant input. To date, most existing algorithms for control allocation neglect actuator dynamics, or 

deal with the actuator dynamics separately. In that case, the interaction among control law, control 

allocation module and dynamics of actuators and aircraft may cause the control commands to lose their 

effectiveness in providing adequate tracking performance or even stability of the closed loop. One reason 

for this is that the presence of actuator dynamics can decrease the overall effective bandwidth of the 

control system, and can even accentuate the effect of unmodeled nonlinearities. While some existing 

approaches have considered the problem to a certain extent, extension to general cases remains elusive. 

In this paper, a model predictive dynamic control allocation scheme is proposed to account for actuator 

dynamics and constraints. A time-varying affine internal model, based on a high-fidelity simulation of 

an experimental RV, is used in the MFC design. One advantage of this approach is that its basic 

structure can be easily extended to a variety of linear actuator models without the need to redesign 

the control scheme. The MFC problem herein is posed as a sequential quadratic programming problem 

with constraints. Subsequently, the problem is cast into a linear complementary problem (LCP), which 

is solvable by linear programming in a finite number of iterations. Results for the proposed technique 

are based on the RV model simulation, and are compared with that of existing static control allocation 

schemes. The paper is organized as follows. The next section discusses traditional control allocation 

schemes, followed by an overview of the aircraft model with actuator dynamics, and an explanation of 

the baseline control allocation scheme developed by Doman et al. [5]. The MFC based control scheme 

is developed in detail in Section III, while simulation results and comparison with the static control 

allocation scheme of Doman et al. are presented in Section IV. 

II.  STATIC CONTROL ALLOCATION 

Control allocation schemes are used to distribute control authority among a set of control effectors 

such that a desired set of moments or accelerations are produced by the controls. A traditional control 

allocation framework is shown in Figure 1, where Udes represents the desired moments/accelerations 



generated by the outer loop control law, 5cmd is the control command computed by the control allocation 

scheme, 5act is the output of the actuator subsystem embodying the actuator dynamics, and Uact is the 

actual moment/angular acceleration generated by the control effectors in response to Udes- In general, Uaa 

is related to the actuator output Sad by means of a nonlinear mapping Uact = 9{t, Sact), with amplitude 

and rate constraints 

5L<S<5U,        \S\<'5, 

where 6 stands either for 5cmd or 6act, SL and 5u are the lower and upper limits of the amplitude, and 

6 is the rate limit. As the flight control system is a sampled-data system, using the simple first-order 

difference approximation 
5{t)-5{t-T) 

where T is the sampling period, the rate limit can be absorbed into the amplitude limit as follows: 

- rp - 

5{t -T)-~5T< 5{t) < 6{t -T)+~5T. 

New lower and upper amplitude limits can therefore be defined as 

5 = max{(5L, 5{t -T)-~5T},    5 = mm{6u, S{t - T) + 5T} 

allowing us to consider only amplitude limits in the sequel. In most traditional existing static control 

allocation schemes, the control effectiveness mapping in Figure 1 is assumed to be linear and time- 

invariant, i.e., 

9{t,5act) = B5act, 

leading to a drastic simplification in the design^ In such a representation, the actuator dynamics are 

neglected (that is, 5cmd = Sad), since it is commonly assumed that the dynamics of the actuators are 

relatively fast compared with that of the aircraft. In this simplified scenario the static control allocation 

problem takes the following form: find Scmd such that 

5 < 6cmd < S , 

where Uad ^ ^"^, B G K^^X" and 5cmd £ K". The control effector redundancy is expressed by the 

fact that rank(5) = m, and n > m. If a feasible solution exists, it is readily obtained by means of 

'Nonlinear control allocation methods are not considered in this paper, but are the subject of the companion work [8] 



pseudo-inversion. In this case, the available redundancy may be employed to satisfy a sub-objective of 

the form 

Jsub = min \\5cmd — ^pWwr, ' 
Ocmd "^ 

where Wp is a weighting matrix, and 5p is a preferred control input chosen to meet additional require- 

ments on control deflections, drag minimization and so forth. For example, if 5p is chosen to be 5act 

at the previous sample, then the sub-objective is to minimize the control energy. If this is the case, the 

solution becomes 

5cmd = ^ + W;^B'^{BW;^B'^)-\u,,s - B5p). 

In solving the static (linear) control allocation problem, linear programming (LP) methods have many 

advantages. For example, the LP problem can be solved within a finite number of iterations, which 

makes it amenable for a real-time implementation on flight control systems operating with a sampling 

rate in the 50-100 Hz range. To be cast into the realm of linear programming, the control allocation 

problem is formulated as a 1-norm optimization problem of the form 

minJd= \\udes - B5\\i 
' _ (1) 

subject to:   5_<5<5. 

Note that the 1-norm allows the optimization problem (1 to be cast into the following LP problem: 

5 
mjn Jd = I 0 • • • 0 1 • • • 1 

lT 

subject to: 

—5s, S , -6 , B6 -6s, -BS - 5s ^ — [ ^ ' ^ ' ""- ' ^^^^' ~^'^ 

where 5s G M" is a slack variable vector with the same dimension as 5. If the optimal solution is 

such that Jd = 0, the solution is not unique, and "excess" control power can be utilized to optimize 

additional objectives. For example, the following 1-norra optimization sub-objective can be used to drive 

the control inputs to some preferred values 

mm Js = mm\\W^(5-5p)\\u 
0 o 

subject to:    Udes = B5 

5<5<5, 

4 



where Wp G R" is a vector of weights to make the optimization problem more flexible. The additional 

sub-optimal problem can also be cast into an LP problem of the form 

subject to: 

min Js = WpSs , 
5 

B5 = Ude 

-,T r 
—6s,   S ,   -5 ,   5 - 5s,   —5 - 5s      <    0 ,   5 ,   —5 ,   5p ,   —5p 

The LP problem can be solved by tiie familiar simplex method, for which numerous well-developed 

implementations are available. 

III.  MODEL PREDICTIVE DYNAMIC CONTROL ALLOCATION 

For systems with actuator dynamics and constraints, the interactions between the advanced control law, 

the control allocation algorithm, and the actuator dynamics with the aircraft body becomes increasingly 

complicated. Hence, the control allocation becomes more difficult. Existing control allocation schemes 

are not amenable to mixing control effects of actuators with varying time constants. For example, the 

dynamics of control surfaces can be classified as fast modes, while the dynamics of the engine are 

relatively slow, perhaps even with inherent delay; traditionally, engine dynamics are treated separately 

for these reasons. All of these factors make the overall control design (inner- and outer-loop) compli- 

cated, particularly because of the interactions among the varying dynamical systems. Model predictive 

control (MPC) or receding horizon control (RHC) are optimization based control techniques which can 

effectively be used for such stringent requirements. MPC utilizes a model of the plant to predict the 

output during a future time interval (horizon), and computes the control commands by minimizing an 

objective function. Thus, the control calculated can pre-act to the system dynamics and achieve a better 

performance. Such a methodology is most effective when the dynamics of the plant can be determined 

with sufficient accuracy. For the problem of dynamic control allocation at issue, the dynamics of the 

actuator have been well studied and a relatively accurate model of the plant is available. 

A. RV model with dynamic inversion control law 

In what follows, we consider explicitly the control architecture for reentry vehicles proposed in Doman 

and Ngo [4] as a baseline for the design of the MPC-based control allocation algorithm. Simulation 

results for the proposed technique will then be compared with those obtained employing the static mixed 

optimization control allocation with intercept correction (MOIC) developed in [5]. 



Fig. 2.    RLV with MPC control allocation 

Following [4], a dynamic inversion-based control law is employed in conjunction with a control 

allocation module having the structure depicted in Figure 1. As shown in Figure 2, the dynamic 

inversion module fwP generates OJBAE, a variable containing nonlinear terms independent of the control 

effective mapping, interpreted as the angular acceleration due to the base-aircraft aerodynamics. The 

prediction module generates the pseudo-control reference w^*^", which is a prediction of the desired 

angular acceleration reference over the receding horizon. The control commands 

are body-axis angular velocity commands to be tracked by the vehicle rotational dynamics. The actuator 

dynamics is modeled as a second-order system for each control channel (control surface) expressed by 

equations of the form 

5{t) = A55{t) + Bsdamdit) 

S<5<5. 

The estimation module in Figure 2 is required to provide the necessary information on the model 

parameters to the MPC control allocator (represented by the MPC&CA block in the figure). The aircraft 

rotational dynamics can be stated as 

u = f{uj,P) + g{P,S), (2) 

where cv = \p q r]^, and the vector P contains the parameters and states associated with the relevant 

operating point. In (2), g{P, 5) represents the control dependent accelerations, while /(w, P) includes 

accelerations due to the aircraft body and engine. Most modem control allocation schemes assume that 

the control effective mapping is linear, in order to reduce the complexities of the control allocation 

design algorithm as well as the advanced control law design. That is, the control dependent part of the 

rotation equation is simplified as 

g{P,6) = B{t)5. 

Typically, this assumption is valid when the deflections of the control surfaces are within their hnear 

region, ff one or some of the control deflections are close to the position limits, nonlinear behavior 

is likely observed, the individual control effectiveness coefficients could be inaccurate, and instabilities 

may result. 



In the proposed MPC control allocation technique, the control effective mapping is modeled as a 

time-varying affine mapping of the form 

9{P,5) = Bit)5 + e{6), 

yielding the resulting model 

u;{t) = f{u;{t),P) + B{t)6{t) + e{5{t)) 

5{t) = As6{t) + Bs5cn,d{t) 

S<5<5. 

The problem is then that of finding the input command Scmdit) such that uj{t) tracks uJdes{t) as closely 

as possible. If we let 

u{t)=uj{t)-f{uj{t),P)-e{S{t)) 
(3) 

= B{t)S{t), 

the MPC control allocation problem is posed as follows: for the constrained system 

S{t) = As6{t) + Bs5^{t) 

y{t) = B{t)5{t) (4) 

find 5cmd{i) such that y{t) tracks u^esit) as closely as possible, being Udes the predicted value for u{t) 

obtained from (3). The MPC approach utilizes (4) as an internal model of the actuator dynamics to 

predict y{t) at a future discrete time instants [y(A; + iVi|A;), • • • ,y(A; + A^2|^)]- In this representation, 

y{k -\- j\k) denotes the optimal ^'-step ahead prediction of the system output, based on data up to time 

A;, while Ni and A^2 are respectively the lower and upper limits of the receding horizon. The pseudo- 

control commands [udes{k + A^i), ■ • • , Udes{k + N2\k)\ are computed from (3) on the basis of predicted 

outputs of the dynamic inversion module. The MPC algorithm applies a control sequence that minimizes 

a multistage cost function of the form 

J{Nr,N2,K) = J2 ^yUMk + m-Udesik + J)? 

+ f^X{j)[A5^d{k + j-l)f 

subject to 

S < 5cmd < S (6) 



where Nu is the horizon of the control command, Wy{j) and X{j) are weighting functions, and AScmd 

is the incremental control command representing the energy needed to actuate the control effector. The 

objective of predictive control is to compute the future control sequence Scmd{k),6cmd{k + 1),... in 

such a way that the future plant output y{k + j) is driven close to Udes{k + j\k), through minimization 

of the objective function. 

B. From MPC to LCP 

According to [3], the MPC problem is then cast into a linear complimentary problem (LCP) of the 

following form: given a vector qeW and matrix M e R"'^", find two vectors s and z satisfying 

s - Mz = 9,    s, 2; > 0,    < s, z >= 0. (7) 

The pivotal algorithm developed by Lemke [6], can then be used to solve the LCP. To transform our 

MPC problem to the LCP (7), define 

5 = en5 + x (8) 

where e„ is the n-dimensional vector e„ = [1,1,..., 1]^. The constraints can be expressed in condensed 

form as ' 

a; > 0,    Rx<c, (9) 

where R and c are, respectively, an appropriate matrix and a column vector related to the specific 

constraints. The MPC objective function, (5), can be transformed into the form 

1 

which, using (8), becomes 

J{5) = ^5^H5 + bS + fo, 

1 7, 
J = -X Hx + ax + fi, 

lb 

where 

a = b + 5elH,    fi = fo +S^e'^Hcn + bS. 

Let V and vi be the vectors of Lagrange multipliers associated rispectively with the first and the second 

set of constraints in (9), and let V2 be the vector of slack variables. The Karush-Kuhn-Tucker (KKT) 

conditions [1] read as 

Rx = V2 = c,    —Hx — PiFv = vi= a, 

x'^vi — 0,    v'^V2 = 0 

X,V,Vi,V2 > 0 

8 



or, in matrix form, 

OATXTTI     ^NXN 

rnxm     ^mxN     ^mxm 

INXN     —R 

V2 

R Vl ^ c 

-H V 

X 

a 

The KKT conditions can be further expressed as the linear complementary problem 

s - Mz = q,    s^z = 0,     s,z>0 

where 

M = 
0 -R 

,    9 = 
c 

,    s = 
V2 

,    z = 
V 

H a Vl X 

The above LPC can be solved using Lemke's algorithm; as a matter of fact, if the matrix H is positive 

definite, convergence to the optimal solution in a finite number of iterations is guaranteed [1]. Moreover, 

a carefully chosen initial solution can greatly reduce the computational requirements. A standard choice 

is to let the solution of the unconstrained MPC problem, expressed in a quadratic programming form, 

be the starting point? In this way the initial point is close to the solution of an LCP problem derived 

from a constrained MPC problem. 

IV. SIMULATION RESULTS 

Because very few results have appeared for control allocation approaches which account for actuator 

dynamics, we will compare our proposed MPC algorithm presented above to existing methods designed 

by neglecting actuator dynamics. A leading algorithm along these lines is a mixed optimization control 

allocation scheme of Doman et al. [5]. In this work, the control effective mapping is assumed to be affine, 

and the algorithm provides intercept corrections to the standard linear formulation (we will refer to this 

baseline scheme as MOIC). The specific model of a six-degree of freedom reentry vehicle endowed with 

a dynamic inversion based control architecture described in [4] has been adopted as a testbed for the 

comparative study between the MPC and the mixed-optimization approach, as discussed in Section IE. 

Specifically, the model has four control surfaces: right flap, left flap, right tail and left tail, with upper 

deflection limit 30°, lower deflection limit -30°, and rate limit 60°/s for all control surfaces under 

nominal conditions. The dynamics of the four actuators are second-order system with amplitude and 

rate limits, and damping ratio equal to 0.7. Different natural frequencies, ranging from 20Hz and 5Hz, 

have been independently assigned and tested for each pair of tail and flap effectors. According to the 

scheme in figure 2, the desired rolling, pitching and yawing rates serving as the command trajectories 



to the system are provided by a higher level planning module. In our test, we have employed a feasible 

reference trajectory corresponding to an approach and landing maneuver. The segment of command 

trajectory employed in the test has duration equal to 53 seconds. For the chosen reference trajectory, 

the only non-zero command is the pitch rate, while the roll and yaw rate commands are kept to a zero 

setpoint. In the prediction module of Fig. 2, a cubic curve fitting is used to smooth the control command 

and to generate smooth pseudo-control commands Udes- Results from several tests performed changing 

the natural frequencies are summarized in Table I. The performance criteria are the mean square error 

(MSB) and the maximum error with respect to the reference trajectory over the entire test interval. Results 

indicate that the errors for MFC are approximately one order to two orders of magnitude smaller than 

those achived by the MOIC, depending on the test conditions. For example, a significant improvement 

in the pitch rate tracking performance is shown in Fig. 3 for the specific case of the bandwidth of the 

tail actuator dynamics equal to 6 Hz. It is worth noting that, when a;„ decreases, the performance of 

MFC does not vary much, while that of the MOIC scheme degenerates sharply. At this regard, figures 

4 and 5 show the time history of the pitch rate and the pitch rate error obtained by the MFC scheme 

during the first 25 seconds of the simulation for decreasing values of the actuator bandwidth, while the 

results of the same test for the MOIC algorithm are shown in figures 6 and 7 respectively. It can be 

noticed that the MOIC-based control loop is driven to the verge of instability by the reduced actuator 

bandwidth, while the MFC-based control is capable of maintaining adequate tracking performance. 

TABLE I 

MPC AND MOIC UNDER DIFFERENT CONDITIONS 

WnHZ Maximum Error MSE 

MPC MOIC MPC MOIC 

20 3.56e-03 1.19e-02 7.49e-04 2.11e-02 

15 3.74e-03 1.23e-02 8.81e-04 2.23e-02 

12 3.74e-03 1.25e-02 1.03e-03 2.37e-02 

10 3.69e-03 1.34e-02 1.19e-03 2.51e-02 

8 3.68e-03 1.34e-02 1.47e-03 2.77e-02 

7 3.72e-03 1.61e-02 1.68e-03 3.52e-02 

6 3.88e-03 3.97e-02 1.91e-03 7.81e-02 

5 4.25e-03 4.32e-02 2.16e-03 1.41e-01 

V.  CONCLUSIONS AND FUTURE RESEARCH 

In this paper, a model predictive dynamic control allocation scheme has been proposed to account 

for actuator dynamics and constraints. A time-varying affine internal model, based on a high-fidelity 

10 



simulation of an experimental RV, has been used in the MPC design. The proposed scheme provides a 

generic approach to distribute control authority among diflFerent types of actuators. Results indicate that 

the proposed approach performs better than traditional static control allocation algorithms in presence of 

significant time lags due to actuator dynamics. The MPC control allocation method proposed in this paper 

has however other advantages than an improvement in tracking accuracy. For example, the proposed 

technique can deal, in principle, with different types of actuators exhibiting a time-scale separation into 

fast and slow dynamics. Moreover, preliminary studies have shown that a large class of failure conditions 

can also be dealt with by the proposed algorithm, without the need to redesign the control allocation 

scheme. This renders the proposed methodology extremely appealing for reconfigurable control. As 

for the stability of the proposed MPC algorithm, several recent works [7] have addressed the essential 

principles for ensuring closed-loop stability, and results following these lines will appear in future 

versions of this study. Finally, it is worth noting that the computational burden of the MPC technique 

has not been addressed and compared with that of MOIC, primarily because at the present stage the MPC 

algorithm has been developed in MATLAB and Simulink only. This important issue will be addressed 

in the future, when the MPC algorithm will be implemented as a stand-alone module. 
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Pitch rate (MOCA and MPC). Actuator Bandwidth: to =6 Hz 

Fig. 3.    Performance of MPC and MOIC with a;„ = 6Hz: pitch rate. 

10 12 14 

time [s] 

16 18 20 

0.02 
Pitch rate (MPC) 

  (0_^=20 Hz 
■-. (o_^=8Hz 
- - 0)^=5 Hz 0.015 -} ■ 

0.01 -I 

— reference 

■ 

f 0.005 X 
0 / 
B 0 

^ 

-0.005 ■ 

-0.01 

 1 1 1— \f^i 1 1 1 1 1 

■ 

22 24 

Fig. 4.    Performance of MPC with Un = 20,8,5Hz: pitch rate. 

12 



2.5 
xlO-" Pitch rate error (MPC) 

' 
  (i)_^.=20 Hz 
_ . M =8 Hz 

2 .... (0=5 Hz n 

1.5 ■.>\- 
■1    \: 
1     r- 
I      I- 

1 

1  V ■'' *i-. 
0.5 'A 

&,                   ^.v'U.. 
0 1 

r V iT                   >v                   J^       *^>s x"**"* 

•> ̂  V^                         ^^^—^ '^',Z~^. 
-^^.^.ip^ 

■j\    /* -. /-■ 

-0.5 

'.1      /-■ 

1. /.■ 

-1 r.'.- 
■ 

'■■-i _l_ , 
_l  

8 10 12 14 16 
time [s] 

18 20 22 24 

Fig. 5.    Performance of MPC with Wn = 20,8, hHz: pitch rate error. 

8 10 12 14 

time [s] 

Pitch rate (MOCA) 

0.025 

0.02 

  (0^=20 Hz 

- - (o"^8 Hz 

■ ■•■  (0=5 Hz 
• 

0.015 

0.01 

Ml ■ - ■ reference 

-     ;";    ;~:    ;; '. ; . 

JO 

2 

0.005 

0 
' v ■ 

- -:-    .           r.    i:   \ m ' '.   • •   • '•   '' 
-tf 

^ 'V '<? W   : • '.'■    '-'.     '■'■     : •    - ;   ; ;   : :   :> - ; 

-0.005 

-0.01 • w f\ 
: M : '■ 

A^ ■ 

P 
- - Ar 

n    !:     V 

-0.015 \: 
«i : 

MMMM; y - 

-0.02 

'_' 
—j.^;  —1—^^ - ■ 

16 18 20 22 24 

Fig. 6.    Performance of MOIC with Wn = 20,8,5 Hz: pitch rate. 

13 



0.02 
Pitch rate error (MOCA) 

I I I 

0.015 - 

0.01 

0.005 

-0.005 

-0.01 

-0.015 

-0.02 
12 14 16 

time [s] 

Fig. 7.   Performance of MOIC with w„ = 20,8,5 Hz: pitch rate error. 

u 


